US009465824B2

a2 United States Patent
Resch et al.

US 9,465,824 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) REBUILDING AN ENCODED DATA SLICE
WITHIN A DISPERSED STORAGE
NETWORK

Applicant: CLEVERSAFE, INC., Chicago, IL,
(US)

(71)

(72) Jason K. Resch, Chicago, IL (US);

Greg Dhuse, Chicago, IL. (US)

Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 296 days.

@
(22)

Appl. No.: 13/874,088

Filed: Apr. 30, 2013

(65) Prior Publication Data

US 2013/0238565 Al Sep. 12, 2013

Related U.S. Application Data

Continuation of application No. 12/862,887, filed on
Aug. 25, 2010.

Provisional application No. 61/264,072, filed on Nov.
24, 2009.

(63)

(60)

Int. CL.
GO6F 7/04
GO6F 17/30

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC GOG6F 17/30303 (2013.01); GOGF 11/1402
(2013.01); GO6F 21/64 (2013.01); GOGF
21/80 (2013.01); HO4L 9/085 (2013.01)

Field of Classification Search

CPC GO6F 11/1076; GO6F 11/1092; GO6F

11/1088; GOGF 2211/1028; GO6F 17/30303;

(58)

GOG6F 21/64; GO6F 11/1402; GOGF 21/80;
GOG6F 11/1412; HO4L 9/085; HO3M 13/154
714/2, 6.2, 6.22, 6.24, 6.32, 48, 54,

714/710, 746, 747, 755, 758, 760, 764,
714/799; 726/4, 17, 21, 27-30; 713/165,
713/167, 193-194
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5/1978 Ouchi
9/1995 Mackay et al.

(Continued)

4,092,732 A
5,454,101 A

OTHER PUBLICATIONS

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

(Continued)

Primary Examiner — Shewaye Gelagay

Assistant Examiner — Trong Nguyen

(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

57 ABSTRACT

A method begins with a computing device of a dispersed
storage network (DSN) determining that an encoded data
slice of a set of encoded data slices requires rebuilding and
sending partial rebuild requests to storage units of the DSN.
The method continues with one of the storage units gener-
ating a partial rebuilt slice based one or more encoded data
slices of the set of encoded data slices stored by the one of
the storage units and securing the partial rebuilt slice using
a shared secret scheme that is shared among the storage units
to produce a secured partial rebuilt slice. The method
continues with the computing device receiving a set of
secured partial rebuilt slices from the storage units, recov-
ering a set of partial rebuilt slices from the set of secured
partial rebuilt slices, and rebuilding the encoded data slice
from the set of partial rebuilt slices.

16 Claims, 17 Drawing Sheets

DS processing module 34

>
—

User
1086
Object

gateway module 78

BT soepal

Source name 35 |
[vault 10 | Vaultgen Jresv | filelp |

data object 40

Source name 35

data segment 1 20

access module 80

name 88

object 40

grid module 82

S P

data segment Y 92

Slice name 37

" " N Vault
Universal Routing Information | Y

Specific
Vault ID | Vaultgen [resv | Data name

Slice index

1

Slice name Slice name

error coded
data slice 1_X 44

error coded
data slice 1_142

Slice name Slice name

storage module 84

-
error coded datasiice 1142 |~

H DSnet interface 32

error coded
data slice Y_X 48

error coded
data slice V_145

slice name

error coded data slice 1_X 44

.
Slice name
error coded data slice Y_1 46

.
Slice name
error coded data slice Y_X 4§

US 9,465,824 B2
Page 2

(51) Int. CL
HO4N 7/16

HO4L 9/08

GO6F 21/64
GO6F 21/80
GO6F 11/14

(56)

5,485,474
5,774,643
5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
8,086,911
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493
2005/0100022
2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0229069

(2011.01)
(2006.01)
(2013.01)
(2013.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

> e e >

1/1996
6/1998
9/1998
9/1998
3/1999
11/1999
11/1999
1/2000
5/2000
10/2000
1/2001
2/2001
7/2001
8/2001
10/2001
3/2002
4/2002
4/2002
7/2002
7/2002
9/2002
5/2003
5/2003
8/2003
4/2004
7/2004
8/2004
8/2004
11/2004
4/2005
2/2006
4/2006
4/2006
7/2006
9/2006
9/2006
9/2006
11/2006
12/2006
1/2007
5/2007
7/2007
9/2007
12/2009
12/2011
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
2/2004
6/2004
10/2004
11/2004
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
10/2005

Rabin

Lubbers et al.
Senator et al.
Hilland
Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al. 714/755
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.
Sim et al.

de la Torre et al.
Taylor c.ocoovvveveicieinenne 714/54
Butterworth et al.
Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma et al.
Ramprashad
Corbett et al.
Karpoff et al.
Fatula, Jr.
Redlich et al.
Schmisseur
Hassner

2006/0047907 Al 3/2006 Shiga et al.
2006/0136448 Al 6/2006 Cialini et al.
2006/0156059 Al 7/2006 Kitamura
2006/0224603 Al 10/2006 Correll, Jr.
2007/0079081 Al 4/2007 Gladwin et al.

2007/0079082 Al
2007/0079083 Al
2007/0088970 Al
2007/0174192 Al
2007/0214285 Al

4/2007
4/2007
4/2007
7/2007
9/2007

Gladwin et al.
Gladwin et al.
Buxton et al.
Gladwin et al.
Au et al.

2007/0234110 A1 10/2007 Soran et al.

2007/0283167 Al 12/2007 Venters, III et al.

2008/0183975 Al* 7/2008 Foster et al. 711/153
2009/0094251 Al 4/2009 Gladwin et al.

2009/0094318 Al 4/2009 Gladwin et al.

2009/0097661 Al* 4/2009 Orsini et al. 380/279
2010/0023524 Al 1/2010 Gladwin et al.

OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance; Journal of the Association for Com-
puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60
pgs.

Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
and Matching Rules; IETF Network Working Group; RFC 4517,
Jun. 2006; pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006, pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516; Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String
Representation of Search Filters; IETF Network Working Group;
RFC 4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
tory Information Models; IETF Network Working Group; RFC
4512; Jun. 2006, pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Work-
ing Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
cal Specification Road Map; IETF Network Working Group; RFC
4510; Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
Storage Systems; 13th IEEE International Symposium on High
Performance Distributed Computing; Jun. 2004; pp. 172-181.

* cited by examiner

US 9,465,824 B2

Sheet 1 of 17

Oct. 11, 2016

U.S. Patent

0T WS15AS gunnduwod

T'Ol4

8T Hun
SuiSeuew sg

g7 9402
dunndwos

| 37 x"As0us03 | 4
(1 1]
| 77 x"To0us03 | ¥

D¢ Hun 8uissacoud
Anu3aiul a3ea01s5

€€ 90BI91UI |¢

Y.

(F\/l\/

| 87x 22503 |eee| T T A=sOT |

| 7w x 10503 |eee | Zr T Ta01503

TT 321A3p Jasn

0€ aoeaul

»i

9¢ 1un sg

o e O x g7 2402

|||||| | Sunndwoo
IEAREEEER)
(X Y] _m 2Bl NSQ

[w1 To00s 09 | 1 4

[X 1]

L G s921|S

¥ JJom1au

A

T | —

A 4

g¢ 2402
gunndwoo

«

07 ¥°0(q e1ep
10/%3 BE 3|1} e1EP

v“ 0¢€ 9oea1ul

A
| [2E9oepau nsal|

i

i

_ TE Buissaroud sq _

9¢ 2J02 Suiindwod

97T nun 8uissadoud sq

TE 92BI9IUI NSO

A

y

5a

€ duissaooud

g7 2402 3unndwod

TT 22IA3p J3sN

US 9,465,824 B2

9
[e e
|
9/ s|npow ¥Z ajnpow 7Z 3|npow adep1ul O @|nhpow g9 a|npow g9 a|npow
22e191ul NSO aoepa1ul gH ysej} 20BJ191U1 JJOMIdU 9oe)J491Ul YH 22eLI21UI SN
A

A 9 9 A A

Sheet 2 of 17

Oct. 11, 2016

U.S. Patent

e::]‘«

8G 92e91Ul |Dd 79
A SOI9 INOY
4
v A 4
99 .| 09 syl
Jonuoo o |- T ol
A
\ 4
pSAowsw | | ZgJasjjosuod | 06 s|npow
ulew bl Alowaw bl guissacoud
A
\ 4

TS 11un Suissasoud
so1ydedd ospia

79 s|npow
AR EMT]]
921Asp Ol

US 9,465,824 B2

Sheet 3 of 17

Oct. 11, 2016

U.S. Patent

BV X A @21|S B1Ep PSp02 JOUID € 'Old 9y T A 921|S EIEp POPOI JOMD
aweu 321§ sweu 321§
[> [J
S _ 7€ 99B}U31UI 18US(Q _ S
[[
¥ X T 221|s e1ep PSpPOJ JOMID I~ eee | TP T T 221|S e1ep POpol JOMD
aweu 321§ / — Sweu 321§
8% X A 921js e1Ep coe 37 T A 321Is elEP
papod oL papod Jos _ ¥ a|npow a8e101s _
3WeU 31| ° aweu 221§ A
[]
— —_ . — p—
v X T 921|s elep eee v T T 920|s elep
papo2 Joaid papo2 Jodid
dweu || aweu 32| v
78 s|npow pug
sweu eieq | asaJ | usBynea | giynea | xspuiladis x
21413ds UoIlEWJIoU| SUIINOY |BSIDAIUN
HNeA)))
7€ aweu a2l|§ 0% 1alqo
elep
76 A Jusw3as eiep v
eee 08 9|npow ss3208 _ 8g Iwleu
x 3o
06 T 1uaw3as elep
GE aWeu 32Jnos 98 Al
_ FEIN
0O 13lqo e1ep — v «—>
87 a|npow Aemoied «— >

GE sWeU 92Jn0S

ai sy

_ Asal _ usg 1nep

alunea

€ aWeu 32Inos

€ a|npow 8uissadsoid sqg

interface 30

US 9,465,824 B2

Sheet 4 of 17

Oct. 11, 2016

U.S. Patent

63 Joiendivew
<« _ <

| xoouseaepoa |

v 921|s E38P O3

€ 321|S e1ep 13

7 921s e1ep D3

T 321|s e1ep 13

_Hmn_ﬁn_mwn_mﬂ_ﬂn_ﬁﬁ_8__mn__

_oMn__mwn__NNn__wE_En__Sn_wn__Nn__

_mNn_mNn_HNn_Dn_ﬂn_mn_mn_ﬁn_

_WNn_qwn__oNn__En__So__mn__§__oo__

[a|eee || g | eee[q| eee | iq|eee| | iq|eee| q |

SO

BLaoons le

¥6 1UsWEas p1ep PapodUd JO SUQ ZE

78 o|npow pus

-9p 9o1)s-1sad

“ T 921|s-150d N

Tg Joieindiuew

78 1901Is-9p |« » GG UIIpPOI3P |«

€8 Joje|ndiuew

-9p 921)5-a.d

| toowseep oz |

‘€Z Hun |oJ1u0d p|ingaJ
|
_ S/ Joiendiuew
7 » 77 P 4 » .
6L 4931s < » [/ J9pOoUs 1« uvf > a01j5-31d
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I
76 1uswWdss e1ep pspodud _ _ 76-06 1UaW3as elep

US 9,465,824 B2

Sheet 5 of 17

Oct. 11, 2016

U.S. Patent

Alowaw NSQ 01 puas pue sialowedled
|euonesado mau Suizijiin $321js 31830

o f

sio1aweled |eucilesado mau auILLIDIAP

<t

TT 4

”_.Um.—no Elep 91Ea.daJ pue $adl|s anslilal

o~

1T
d|qeloaey} 10U

aJedwod

9|qeloney

ploysaJyl e o1 Ajgeloney
aledwod Y| 1N Jo/pue 41 1A H SuUIlIS13p

O

T 0

AJol1sIy YILLIN Jo/pue 41| IN =1epdn

o f

0

HLLIN JOo/pue {] 1IN SulWIS1ap

o f

$J0JJ3 AJowaw NSQ 1994402

T f

s10J42 Alowaw NSQ duIwJI1ap

| R

9951

8 'Ol

US 9,465,824 B2

JVYINH
panaLI1aJ Se SWes ayl
10U S| DYINH paienojes
3J3YM Sa0I|S pJedsip

S321|S
wouj 123(qo
B1EP 91E340

aJedwod

Sheet 6 of 17

Oct. 11, 2016

U.S. Patent

i 4720 L9l
5921|5104 JVIAIH
poASIIa) 01 DVIAIH paie|nojed sJedwod
% ort 28e.035 40} Alowsw NSQ 03 Saleys
Asy uonresinuayine sdessaw pue 194295 pue JYWH pepuadde yim sadi[s puss
S3DI[S UO Paskeq SIS JOJ IVINH 21e|ndjed
/ gET 5 1
_ A S32|[S elep
Ag) uoneosiuayine pPapoduUs 0] sdJeys 18423s pue Jy|INH puadde
o3essowl AJlUIDA —
et 0
10U Op S3JeysS 13403S
3JaYM $321|S pJeasip N A3y uonedijuayine a8essaw
3Y1 Uo paseq SaJeysS 13J23s JO 135 B aUIWIlap
9¢T —
742 0

Ao uoneonuaiine adessaw sy Ajrian Aay uonednuayine agessaw syl pue elep

% ET 321|S UO paseq $321|S 40} DVIAIH & aulwJalap

S2JBYS 124295 UO Paseq k444 %

A2 uoneanuayine a8essaw e sulLLIEIap A2y uoilediluayine afessaw e aulWIdlAP

1 433 — 0

AJowaw NSO WOy SaJBYS 13409
pue JYINH papuadde yum s321|5 311124 5991|S B1EP P3pOdUS 318910

o
—
—

) 0eT)

US 9,465,824 B2

Sheet 7 of 17

Oct. 11, 2016

U.S. Patent

195 a8eJo31s
Hun §Qg 01 sal|s
paleasdal puas

[—

91

6 914
303[qo ejep SOL1BW HUN
WOy S30I|S Allpow
a1ealdal A | S9HP
oot 057
[NJS$320NS

uollealdal Huw.—n_o elep JI sulwialsp

o i

S901|S paAsLIIal
woJ} 123(qo elep a1ealdal 01 }dwane

o f

SUUN S peaJ WoJj S321|s e1ep DJ SAS1413)

*

S)UN S peaJ aulwJalap

<
N
—

75T fe

SOUlaW uUNn §g sulwJalap

& f

195 98eJ01S 1UN S BUIWIBLBP

o f

JoJ4J3 AlowaWw NSQ duIWI18p

> f

US 9,465,824 B2

Sheet 8 of 17

Oct. 11, 2016

U.S. Patent

0T "OId

1os
28eJ01s 1un g 01 Sadl|s palkeaJldal puss

o f

19(qo elep
wou) 32uo sJe||id ||e 104 S3D1|S S1e3408

o f

S30I|S PAAaII1RJ WOy 103[qo elep a1eaudal

O
—

L

ﬁ

sloJla yum siejid ||e suiwialsp

9

<
~

L

J2UO S32I|S elep DI aA3LI1DI

o~
M~
~—

i

J04J3 3y3 yum Jejjid ay3 auiwialap

(=]
M~
~—

1

135 9981015 HUN §Q SUIWIIIAP

[>]
|
|

1

Jossa Alowaw NS@ auIwIalap

el
0
—

ﬂ

US 9,465,824 B2

Sheet 9 of 17

Oct. 11, 2016

U.S. Patent

9 Hun sa

¥ Hun sa

SHunsa

TT "9

cyun sa

$]T Aowaw

8T
s|npow guissadoad

A8atul a8euols

THun sa

US 9,465,824 B2

Sheet 10 of 17

Oct. 11, 2016

U.S. Patent

061 Jopoous |

B]ep PopO0 J04IS

G | ools

€ oS

0G| Jepoous |¢

uonessnjqo | G'€d

B)ep papoo Jolie

y | 90l

uoneasnyqo | ¥'ed

»| 761 Jopooap

¢l '9Old
| — — — —
_ 1 — ¢bl — 73 78 Jojeindivew |
_ 1spoous J8pcasp lgol|sep Al -apaglsisod |
| |ered |ented
¥61 AI 261 78 75 Jojendivew |
I8poous 13pooap [Jaoysep [€] -epooysisod [€
|enJed |enJed
61 AI 261 78 75 Joendivew |
1apoous 1apoosp [€ laol|sap Nl -apoglsisod |
|enJed |ented

BJep papoo Joule

¢ | ools

e)ep papoo 0.

Z olis

AR x

g)ep papoo Jo.e

17} 80lIs

| NS

»| UoieoSnIqo |
[y p— 761 261 VIS 7§ JojendiueL _

961, JOpOIUD | — —] . <
e 1 ‘ 13poous 18podsp 1901|sop -opogsisod [1
STSErespTISded _ uoneosnjgo | ¢ €d ened eqed _
l |
m _ _ I
= Y61 ebl 78 7§ Joreindivew |

+ | GBT Jopoous |¢ — — — . <
e ! ‘ apoous 1apoosp 1901|s9p -opogsisod [|
STSDYTIIDTISDTEd | | voneosnyqo |} ed ened ened |

_

_ _

Z8 (s)sinpow pub

B)Bp Papo0 J04Io

0 1 ®ols

U.S. Patent Oct. 11, 2016 Sheet 11 of 17 US 9,465,824 B2

P3,1
S
P3,1

197

to obfuscation decoder

.
'

vvvvvvvv

12 | @ | dS1

» partial encoder 194

10
=
5
P3,18512@E5144D515

FIG. 13

d
aS1
bS1
ds1
eS1

[
»

Al

» partial decoder 192
Sl

S1

0

e| 0

0

0

0

P3,1 = 9aS1 + 10bS1 + 11dS1 + 12eS31
obfuscation encoder 196

D

P3,1

site 1, DS unit 1
slices
S12
S14
S15

S1

US 9,465,824 B2

Sheet 12 of 17

Oct. 11, 2016

U.S. Patent

] GG 49poaus uoljeasnjqo
¥l Ol c7c
ves
- — (IS
/61 P] < \.ﬁ_
Jopoosp uoneosnjqo 0] SZSPrTIP ISP Ed \L/ - T 2y
ZsMeL + 2slhL + zsuol + 2sbe = g'ed
- i : _
-
- = : :
- FASY %% % FASY 0 [
g'ed zsl |eleL|LL|olL zs! 0 |e®
- sy sy Zs Y
- zsb zsb 0 6
m/ U < U/ _m _<
Zs
- 761 Jopoous |ensed | 761 Jopooop ened |
Zed $90I|S

guungsq 'L sus

US 9,465,824 B2

Sheet 13 of 17

Oct. 11, 2016

U.S. Patent

Gl 'Old —
B Jopodud UoIRISNgqo
SS
ves
—— VIS
61 P] < Ja _MH
Jopoosp uoneosnigo o} SYSDYZSPYISDY'sd \L/ h = v'sd
ySbzl + $SdLL + $SUQL + PSWE = v'ed
- o _
- 0 b
- ¥Sb ¥Sb S d
v'ed |- | ¥sd psd| =0 |@
- ySu psu 0 u
- psuw % psw 0 w
W/ —U < U/ _m _<
1)
, V61 Jepoous |enJed |« 761 Jlepoosp enued |«
v ed Sa2IIs ¥ WuN

obelo)g sQ ‘Z 9IS

US 9,465,824 B2

Sheet 14 of 17

Oct. 11, 2016

U.S. Patent

761

15p028p UOIIEISNIGO O}

o

9} Ol

B 12p0dus uoleasnjqo

512

A

<

SYSEPSTIPSTSPS ed

/“/ —— §IS
D+

G'ed

GSMZL + GSALL + GSI0L + GSS6 = G'€dS

i
i

asm

GSA (@ clL | L

gsi

ol

Gss

~N

767 Jopoous |ened

g'ed

0 X
GsS Mm
GsSm 0 A
GSA 0 |e® %
sl 0)
Ggss 0]
p S v

Gs

A

61 1epooap [elped

A

sool[s
G Jun g ‘¢ 8IS

US 9,465,824 B2

Sheet 15 of 17

Oct. 11, 2016

U.S. Patent

8uissiw sem 321|s aJaym (s)iun
S 01 934015 404 (5)321|S Pa1LDIIAI PUIS

i f

1uswdas Elep Wwolj s92I|S 9}ealdal

1¢ A

Juawgas

e}ep SIYy} Jo} sHuUn
SQ Ul sad[s ||e 319|3p N

T¢

[Ny$S320NS

uolijealdal uawdas elep }J1 sulwlialap

% f

Ll "Old4

S93I|S paAnalilal
wodj AVEINEN Elep 9]kaldal 01 1dwanie

Ol
o]

15I%2

S321|S
uje

1513 sJej|id U ||e 40} S3DI|S 4l DUIWIDISP

e f

S1UN § LWOJJ S331[S _1Ep 7T 2A113l

o
o

w0t T

135 988101 Ul SHUN §Q SUIWI19p

[
o
o~

i

221|s aulwia1op

Q|
)]
—

?

US 9,465,824 B2

Sheet 16 of 17

81 "old

1SIX3
sjuawgas

N e A

SHuUn §Q 01 2401S 01 S3J|s puas

<<
o

€ % s1sIxa Juawsgas erep yoea

10} 221|S B1EP DJ BUO 1SBI| 1B JI SUIWIDIP

(s)ruawdas ejep Joy Sa0I|S 81E84D

o\
o

£

; vz 0
sHun sq woJdy Juawgas ejep
(shusw3as e1ep J9||j suIWISP Yoea 40} 321|S B1BP)3 SUO 1SB3| 1B SA31II3)

Q)
o
o
o

[£44 T

Oct. 11, 2016

195 28.J01S Ul SHUN §Q AUIWIDIAP

pa3lqo
el1ep JO S3II|S ||e 919|3p

o

44 0

123[qo e1ep JOJ 1SIX3 PINOYS

U.S. Patent

919]9p

[44

1BY1 s1uswdas elep JO J3qUINU SUIWIS1SP

37T 0
syjuawsoas elep
Suissiw Jo poylaw uolysodsip sulwialap 103[qo e1Ep BUIWISIAP

CT44 0 E e

US 9,465,824 B2

Sheet 17 of 17

Oct. 11, 2016

U.S. Patent

0¢ Ol

61 "Old

AJo1dalip wouy 193[qo erep a13|ap

e/
o~

1SIX2
wawdas

o ued

AJO123J1p pUNO} %8 1SO| B 0} BWEU 321|S YUl

S1SIXo uswdss elep

3U0 15e3| 1€ o Jed ISed)| 1B JI BU|WIBISP

o
L)
o

744

9

s1un §Qg woul 1udWaas Eelep U0 1se9|
1e 0] 22I|S elep D 2UO 1se9| 18 aAalIlal

e

%

195 38eJ01S Ul S1UN S 2UIWIRIP

SWeu JI[S Y} 03 pa3ul| AloId3IIP
Ul S3SIXS SWeU 123[qo elep Jl SUIWIS13p

ore

1

e f

103[q0 e1ep JOJ 1SIXD

PInoys leyl Ssjuswdss Elep aulwJalap

Alowaw NS Ul aWeu 321[S aulWIalap

Y4

%

AJoaJip ul 123[qo e1EP BUIWISIAP

™ R

(¥4

>

US 9,465,824 B2

1
REBUILDING AN ENCODED DATA SLICE
WITHIN A DISPERSED STORAGE
NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuant to 35 US.C. §120, as a continuation, to the
following U.S. Utility Patent Application, which is hereby
incorporated herein by reference in its entirety and made
part of the present U.S. Utility Patent Application for all
purposes:

1. U.S. Utility application Ser. No. 12/862,887, entitled
“DISPERSED STORAGE NETWORK DATA SLICE
INTEGRITY VERIFICATION,” filed Aug. 25, 2010,
pending, which claims priority pursuant to 35 U.S.C.
§119(e) to the following U.S. Provisional Patent Appli-
cation:

a. U.S. Provisional Application Ser. No. 61/264,072, entitled
“DISTRIBUTED STORAGE NETWORK REBUILD-
ING,” filed Nov. 24, 2009.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such
computing systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting system generates data and/or manipulates data from
one form into another. For instance, an image sensor of the
computing system generates raw picture data and, using an
image compression program (e.g., JPEG, MPEG, etc.), the
computing system manipulates the raw picture data into a
standardized compressed image.

With continued advances in processing speed and com-
munication speed, computers are capable of processing real
time multimedia data for applications ranging from simple
voice communications to streaming high definition video.
As such, general-purpose information appliances are replac-
ing purpose-built communications devices (e.g., a tele-
phone). For example, smart phones can support telephony
communications but they are also capable of text messaging
and accessing the internet to perform functions including
email, web browsing, remote applications access, and media
communications (e.g., telephony voice, image transfer,
music files, video files, real time video streaming. etc.).

Each type of computer is constructed and operates in
accordance with one or more communication, processing,
and storage standards. As a result of standardization and
with advances in technology, more and more information
content is being converted into digital formats. For example,

10

15

20

25

30

35

40

45

50

55

60

65

2

more digital cameras are now being sold than film cameras,
thus producing more digital pictures. As another example,
web-based programming is becoming an alternative to over
the air television broadcasts and/or cable broadcasts. As
further examples, papers, books, video entertainment, home
video, etc. are now being stored digitally, which increases
the demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various
operational aspects of the computer’s processing and com-
munication functions. Generally, the immediacy of access
dictates what type of memory device is used. For example,
random access memory (RAM) memory can be accessed in
any random order with a constant response time, thus it is
typically used for cache memory and main memory. By
contrast, memory device technologies that require physical
movement such as magnetic disks, tapes, and optical discs,
have a variable response time as the physical movement can
take longer than the data transfer, thus they are typically
used for secondary memory (e.g., hard drive, backup
memory, etc.).

A computer’s storage system will be compliant with one
or more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system
(FFS), disk file system (DFS), small computer system inter-
face (SCSI), internet small computer system interface
(iSCS8I), file transfer protocol (FTP), and web-based distrib-
uted authoring and versioning (WebDAV). These standards
specify the data storage format (e.g., files, data objects, data
blocks, directories, etc.) and interfacing between the com-
puter’s processing function and its storage system, which is
a primary function of the computer’s memory controller.

Despite the standardization of the computer and its stor-
age system, memory devices fail; especially commercial
grade memory devices that utilize technologies incorporat-
ing physical movement (e.g., a disc drive). For example, it
is fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of
use. One solution is to utilize a higher-grade disc drive,
which adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID
controller adds parity data to the original data before storing
it across the array. The parity data is calculated from the
original data such that the failure of a disc will not result in
the loss of the original data. For example, RAID 5 uses three
discs to protect data from the failure of a single disc. The
parity data, and associated redundancy overhead data,
reduces the storage capacity of three independent discs by
one third (e.g., n—1=capacity). RAID 6 can recover from a
loss of two discs and requires a minimum of four discs with
a storage capacity of n-2.

While RAID addresses the memory device failure issue,
it is not without its own failure issues that affect its effec-
tiveness, efficiency and security. For instance, as more discs
are added to the array, the probability of a disc failure
increases, which increases the demand for maintenance. For
example, when a disc fails, it needs to be manually replaced
before another disc fails and the data stored in the RAID
device is lost. To reduce the risk of data loss, data on a RAID
device is typically copied on to one or more other RAID
devices. While this addresses the loss of data issue, it raises
a security issue since multiple copies of data are available,
which increases the chances of unauthorized access. Further,

US 9,465,824 B2

3

as the amount of data being stored grows, the overhead of
RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6 is a flowchart illustrating an example of modifying
an error coding dispersal storage function parameter in
accordance with the invention;

FIG. 7 is a flowchart illustrating an example of generating
integrity checking elements in accordance with the inven-
tion;

FIG. 8 is a flowchart illustrating an example of verifying
encoded data slice integrity in accordance with the inven-
tion;

FIG. 9 is a flowchart illustrating an example of rebuilding
encoded data slices in accordance with the invention;

FIG. 10 is a flowchart illustrating another example of
rebuilding encoded data slices in accordance with the inven-
tion;

FIG. 11 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the inven-
tion;

FIG. 12 is a schematic block diagram of an embodiment
of a plurality of grid modules in accordance with the
invention;

FIG. 13 is a schematic block diagram of another embodi-
ment of a grid module in accordance with the invention;

FIG. 14 is a schematic block diagram of another embodi-
ment of a grid module in accordance with the invention;

FIG. 15 is a schematic block diagram of another embodi-
ment of a grid module in accordance with the invention;

FIG. 16 is a schematic block diagram of another embodi-
ment of a grid module in accordance with the invention;

FIG. 17 is a flowchart illustrating an example of optimiz-
ing memory usage in accordance with the invention;

FIG. 18 is a flowchart illustrating another example of
optimizing memory usage in accordance with the invention;

FIG. 19 is a flowchart illustrating another example of
optimizing memory usage in accordance with the invention;
and

FIG. 20 is a flowchart illustrating another example of
optimizing memory usage in accordance with the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of a computing
system 10 that includes one or more of a first type of user
devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may
include one or more wireless and/or wire lined communi-
cation systems; one or more private intranet systems and/or

w

10

15

20

25

30

35

40

45

50

55

60

65

4

public internet systems; and/or one or more local area
networks (LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee,
etc.). The processing module may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module may have
an associated memory and/or memory element, which may
be a single memory device, a plurality of memory devices,
and/or embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that
if the processing module includes more than one processing
device, the processing devices may be centrally located
(e.g., directly coupled together via a wired and/or wireless
bus structure) or may be distributedly located (e.g., cloud
computing via indirect coupling via a local area network
and/or a wide area network). Further note that when the
processing module implements one or more of its functions
via a state machine, analog circuitry, digital circuitry, and/or
logic circuitry, the memory and/or memory element storing
the corresponding operational instructions may be embed-
ded within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic
circuitry. Still further note that, the memory element stores,
and the processing module executes, hard coded and/or
operational instructions corresponding to at least some of the
steps and/or functions illustrated in FIGS. 1-20.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity process-
ing unit 20 may be a portable computing device (e.g., a
social networking device, a gaming device, a cell phone, a
smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed
computing device (e.g., a personal computer, a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment). Such a portable or fixed computing
device includes a computing core 26 and one or more
interfaces 30, 32, and/or 33. An embodiment of the com-
puting core 26 will be described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30,
32, and 33 includes software and/or hardware to support one
or more communication links via the network 24 and/or
directly. For example, interface 30 supports a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the second type of user device 14 and the
DS processing unit 16. As another example, DSN interface
32 supports a plurality of communication links via the
network 24 between the DSN memory 22 and the DS
processing unit 16, the first type of user device 12, and/or the
storage integrity processing unit 20. As yet another example,
interface 33 supports a communication link between the DS

US 9,465,824 B2

5
managing unit 18 and any one of the other devices and/or
units 12, 14, 16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly
stored in a plurality of physically different locations and
subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures
of network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include estab-
lishing distributed data storage parameters, performing net-
work operations, performing network administration, and/or
performing network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established
for a user group of devices, established for public access by
the user devices, etc.). For example, the DS managing unit
18 coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing
unit 18 also determines the distributed data storage param-
eters for the vault. In particular, the DS managing unit 18
determines a number of slices (e.g., the number that a data
segment of a data file and/or data block is partitioned into for
distributed storage) and a read threshold value (e.g., the
minimum number of slices required to reconstruct the data
segment).

As another example, the DS managing unit 18 creates and
stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS man-
aging unit 18 tracks the number of times a user accesses a
private vault and/or public vaults, which can be used to
generate a per-access bill. In another instance, the DS
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for
potential failures, determines the devices’ and/or units’
activation status, determines the devices’ and/or units’ load-
ing, and any other system level operation that affects the
performance level of the system 10. For example, the DS
managing unit 18 receives and aggregates network manage-
ment alarms, alerts, errors, status information, performance
information, and messages from the devices 12-14 and/or
the units 16, 20, 22. For example, the DS managing unit 18
receives a simple network management protocol (SNMP)
message regarding the status of the DS processing unit 16.

20

25

35

40

45

50

55

6

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of
the DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iISCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data file 38
and/or data block 40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding
dispersal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data seg-
ments. For example, the DS processing 34 may partition the
data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2* to 2”7 bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or
from groups of segments to groups of segments, etc.).

For each of the Y data segments, the DS processing 34
error encodes (e.g., forward error correction (FEC), infor-
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data
storage parameters and the error coding scheme. For
example, if a Reed-Solomon (or other FEC scheme) is used
in an n/k system, then a data segment is divided into n slices,
where k number of slices is needed to reconstruct the
original data (i.e., k is the threshold). As a few specific
examples, the n/k factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the corre-
sponding EC slice 42-48. The slice name includes universal
DSN memory addressing routing information (e.g., virtual
memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via
the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize
the EC slices 42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48
is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the
DS managing unit 18 may indicate that each slice is to be
stored in a different DS unit 36. As another example, the DS
managing unit 18 may indicate that like slice numbers of

US 9,465,824 B2

7

different data segments are to be stored in the same DS unit
36. For example, the first slice of each of the data segments
is to be stored in a first DS unit 36, the second slice of each
of the data segments is to be stored in a second DS unit 36,
etc. In this manner, the data is encoded and distributedly
stored at physically diverse locations to improve data stor-
age integrity and security. Further examples of encoding the
data segments will be provided with reference to one or
more of FIGS. 2-20.

Each DS unit 36 that receives an EC slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.

The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the
exception that it includes the DS processing. As such, the
device 12 encodes and slices the data file and/or data block
it has to store. The device then transmits the slices 11 to the
DSN memory via its DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file
or data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may
also communicate with the DS managing unit 18 to verify
that the user device 14 is authorized to access the requested
data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, verifies the command,
accesses its virtual to physical memory mapping, retrieves
the requested slice, or slices, and transmits it to the DS
processing unit 16.

Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the
data segment. When Y number of data segments has been
reconstructed, the DS processing unit 16 provides the data
file 38 and/or data block 40 to the user device 14. Note that
the first type of user device 12 performs a similar process to
retrieve a data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a
read only memory (ROM) basic input output system (BIOS)

10

15

20

25

30

35

40

45

50

55

60

65

8

64, and one or more memory interface modules. The
memory interface module(s) includes one or more of a
universal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface
module 70, a flash interface module 72, a hard drive inter-
face module 74, and a DSN interface module 76. Note the
DSN interface module 76 and/or the network interface
module 70 may function as the interface 30 of the user
device 14 of FIG. 1. Further note that the IO device interface
module 62 and/or the memory interface modules may be
collectively or individually referred to as 1O ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may
have an associated memory and/or memory element, which
may be a single memory device, a plurality of memory
devices, and/or embedded circuitry of the processing mod-
ule 50. Such a memory device may be a read-only memory,
random access memory, volatile memory, non-volatile
memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital infor-
mation. Note that if the processing module 50 includes more
than one processing device, the processing devices may be
centrally located (e.g., directly coupled together via a wired
and/or wireless bus structure) or may be distributedly
located (e.g., cloud computing via indirect coupling via a
local area network and/or a wide area network). Further note
that when the processing module 50 implements one or more
of its functions via a state machine, analog circuitry, digital
circuitry, and/or logic circuitry, the memory and/or memory
element storing the corresponding operational instructions
may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital cir-
cuitry, and/or logic circuitry. Still further note that, the
memory element stores, and the processing module 50
executes, hard coded and/or operational instructions corre-
sponding to at least some of the steps and/or functions
illustrated in FIGS. 1-20.

FIG. 3 is a schematic block diagram of an embodiment of
a dispersed storage (DS) processing module 34 of user
device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module
84. The DS processing module 34 may also include an
interface 30 and the DSnet interface 32 or the interfaces 68
and/or 70 may be part of user device 12 or of the DS
processing unit 16. The DS processing module 34 may
further include a bypass/feedback path between the storage
module 84 to the gateway module 78. Note that the modules
78-84 of the DS processing module 34 may be in a single
unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a trans-
action message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The
gateway module 78 authenticates the user associated with

US 9,465,824 B2

9

the data object by verifying the user ID 86 with the DS
managing unit 18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units
(X=16 wide). The operational parameters may include an
error coding algorithm, the width n (number of pillars X or
slices per segment for this vault), a read threshold T, a write
threshold, an encryption algorithm, a slicing parameter, a
compression algorithm, an integrity check method, caching
settings, parallelism settings, and/or other parameters that
may be used to access the DSN memory layer.

The gateway module 78 uses the user information to
assign a source name 35 to the data. For instance, the
gateway module 78 determines the source name 35 of the
data object 40 based on the vault identifier and the data
object. For example, the source name 35 may contain a file
identifier (ID), a vault generation number, a reserved field,
and a vault identifier (ID). As another example, the gateway
module 78 may generate the file ID based on a hash function
of the data object 40. Note that the gateway module 78 may
also perform message conversion, protocol conversion, elec-
trical conversion, optical conversion, access control, user
identification, user information retrieval, traffic monitoring,
statistics generation, configuration, management, and/or
source name determination.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The number of segments Y may be chosen
or randomly assigned based on a selected segment size and
the size of the data object. For example, if the number of
segments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object.
For instance, if the data object is an image file of 4,194,304
eight bit bytes (e.g., 33,554,432 bits) and the number of
segments Y=131,072, then each segment is 256 bits or 32
bytes. As another example, if segment size is fixed, then the
number of segments Y varies based on the size of data
object. For instance, if the data object is an image file of
4,194,304 bytes and the fixed size of each segment is 4,096
bytes, then the then number of segments Y=1,024. Note that
each segment is associated with the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding
dispersal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable,
the grid module 82 error encodes (e.g., Reed-Solomon,
Convolution encoding, Trellis encoding, etc.) the data seg-
ment or manipulated data segment into X error coded data
slices 42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal
function include a read threshold T, a write threshold W, etc.
The read threshold (e.g., T=10, when X=16) corresponds to
the minimum number of error-free error coded data slices

25

30

40

45

50

55

10

required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module
indicates proper storage of the encoded data segment. Note
that the write threshold is greater than or equal to the read
threshold for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing
information field includes a slice index, a vault 1D, a vault
generation, and a reserved field. The slice index is based on
the pillar number and the vault ID and, as such, is unique for
each pillar (e.g., slices of the same pillar for the same vault
for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID
and a segment number (e.g., a sequential numbering of data
segments 1-Y of a simple data object or a data block
number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipu-
lation on the slices. If enabled, the manipulation includes
slice level compression, encryption, CRC, addressing, tag-
ging, and/or other manipulation to improve the effectiveness
of the computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which
of'the DS storage units 36 will store the EC data slices based
on a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS
storage unit attributes may include availability, self-selec-
tion, performance history, link speed, link latency, owner-
ship, available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another
source, a lookup table, data ownership, and/or any other
factor to optimize the operation of the computing system.
Note that the number of DS storage units 36 is equal to or
greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different
segments (e.g., EC data slice 1 of data segment 1 and EC
data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identi-
fies a plurality of DS storage units based on information
provided by the grid module 82. The storage module 84 then
outputs the encoded data slices 1 through X of each segment
1 through Y to the DS storage units 36. Each of the DS
storage units 36 stores its EC data slice(s) and maintains a
local virtual DSN address to physical location table to
convert the virtual DSN address of the EC data slice(s) into
physical storage addresses.

In an example of a read operation, the user device 12
and/or 14 sends a read request to the DS processing unit 16,
which authenticates the request. When the request is authen-
tic, the DS processing unit 16 sends a read message to each
of the DS storage units 36 storing slices of the data object
being read. The slices are received via the DSnet interface 32
and processed by the storage module 84, which performs a
parity check and provides the slices to the grid module 82

US 9,465,824 B2

11

when the parity check was successful. The grid module 82
decodes the slices in accordance with the error coding
dispersal storage function to reconstruct the data segment.
The access module 80 reconstructs the data object from the
data segments and the gateway module 78 formats the data
object for transmission to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely
external to the grid module 82. For example, the control unit
73 may be part of the computing core at a remote location,
part of a user device, part of the DS managing unit 18, or
distributed amongst one or more DS storage units.

In an example of a write operation, the pre-slice manipu-
lator 75 receives a data segment 90-92 and a write instruc-
tion from an authorized user device. The pre-slice manipu-
lator 75 determines if pre-manipulation of the data segment
90-92 is required and, if so, what type. The pre-slice
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based on a computing system-wide prede-
termination, a table lookup, vault parameters associated with
the user identification, the type of data, security require-
ments, available DSN memory, performance requirements,
and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in
accordance with the type of manipulation. For example, the
type of manipulation may be compression (e.g., Lempel-
Ziv-Welch, Huffman, Golomb, fractal, wavelet, etc.), signa-
tures (e.g., Digital Signature Algorithm (DSA), Elliptic
Curve DSA, Secure Hash Algorithm, etc.), watermarking,
tagging, encryption (e.g., Data Encryption Standard,
Advanced Encryption Standard, etc.), adding metadata (e.g.,
time/date stamping, user information, file type, etc.), cyclic
redundancy check (e.g., CRC32), and/or other data manipu-
lations to produce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data seg-
ment 92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77
determines which forward error correction algorithm to use
based on a predetermination associated with the user’s vault,
a time based algorithm, user direction, DS managing unit
direction, control unit direction, as a function of the data
type, as a function of the data segment 92 metadata, and/or
any other factor to determine algorithm type. The forward
error correction algorithm may be Golay, Multidimensional
parity, Reed-Solomon, Hamming, Bose Ray Chauduri Hoc-
quenghem (BCH), Cauchy-Reed-Solomon, or any other
FEC encoder. Note that the encoder 77 may use a different
encoding algorithm for each data segment 92, the same
encoding algorithm for the data segments 92 of a data object,
or a combination thereof.

The encoded data segment 94 is of greater size than the
data segment 92 by the overhead rate of the encoding
algorithm by a factor of X/T, where X is the width or number
of slices, and T is the read threshold. In this regard, the
corresponding decoding process can accommodate at most
X-T missing EC data slices and still recreate the data
segment 92. For example, if X=16 and T=10, then the data
segment 92 will be recoverable as long as 10 or more EC
data slices per segment are not corrupted.

20

40

45

50

12

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example,
if the slicing parameter is X=16, then the slicer 79 slices
each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or
other metadata. Note that the type of post-slice manipulation
may include slice level compression, signatures, encryption,
CRC, addressing, watermarking, tagging, adding metadata,
and/or other manipulation to improve the effectiveness of
the computing system.

In an example of a read operation, the post-slice de-
manipulator 89 receives at least a read threshold number of
EC data slices and performs the inverse function of the
post-slice manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to
produce an encoded data segment 94. The decoder 85
performs the inverse function of the encoder 77 to recapture
the data segment 90-92. The pre-slice de-manipulator 83
performs the inverse function of the pre-slice manipulator 75
to recapture the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the
encoded data segment 94 includes thirty-two bits, but may
include more or less bits. The slicer 79 disperses the bits of
the encoded data segment 94 across the EC data slices in a
pattern as shown. As such, each EC data slice does not
include consecutive bits of the data segment 94 reducing the
impact of consecutive bit failures on data recovery. For
example, if EC data slice 2 (which includes bits 1, 5, 9, 13,
17, 25, and 29) is unavailable (e.g., lost, inaccessible, or
corrupted), the data segment can be reconstructed from the
other EC data slices (e.g., 1, 3 and 4 for a read threshold of
3 and a width of 4).

FIG. 6 is a flowchart illustrating an example of modifying
an error coding dispersal storage function parameter (e.g., an
operational parameter). The method begins at step 102
where a DS processing determines dispersed storage net-
work (DSN) memory errors. Such errors may include one or
more of missing data slices, data slices with errors, cor-
rupted data slices, tampered data slices, an offline DS unit,
a network failure, and a DS unit memory failure (e.g., a
failed disk drive). Such a determination may be based on one
or more of a scan of slice names present in a DS unit, a
memory test, a comparison of calculated slice checksums to
stored checksums, an integrity test, a network element ping
test, and a command.

The method continues with step 104 where the DS
processing corrects the DSN memory errors. For example,
the DS processing retrieves at least a read threshold number
of data slices for a data segment corresponding to the data
slice with the error, de-slicing the data slices, and decodes
the data slices in accordance with the error coding dispersal
storage function parameters to produce the data segment.
Next, the DS processing encodes and slices the data segment
in accordance with the error coding dispersal storage func-
tion parameters to produce a set of encoded data slices. The
DS processing sends at least some data slices of the set of
encoded data slices with a store command to the DSN
memory for storage therein (e.g., the data slices are con-

US 9,465,824 B2

13

firmed as stored in at least a write threshold number of DS
units). Alternatively, or in addition to, the DS processing
determines new error coding dispersal storage function
parameters and encodes and slices the data segment in
accordance with the new error coding dispersal storage
function parameters to produce the set of encoded data
slices. Next, the DS processing stores at least some data
slices of the set of encoded data slices with a store command
to the DSN memory for storage therein. Note that the DS
processing may determine the new error coding dispersal
storage function parameters based in part on reliability
information as will be discussed in greater detail below.

At step 106, the DS processing unit determines mean time
to failure (MTTF) and mean time to repair (MTTR) infor-
mation where MTTF measures the time between detected
DSN memory errors for the same memory and MTTR
measures the time between detecting the DSN memory error
and correcting the DSN memory error (e.g., the rebuilding
time). Note that the MTTR may be longer when larger disk
drives are utilized as the memory since it may take longer to
read more data from the other pillars and then write more
recreated slices to the memory. The DS processing calcu-
lates the MTTF and MTTR information by retrieving MTTF
and MTTR history from storage (e.g., the history records are
stored in one or more of the storage integrity processing unit
and the DSN memory) and averaging the retrieved infor-
mation with the current error detection scenario data. At step
108, The DS processing updates the MTTF and MTTR
history by storing the MTTF and MTTR information.

The method continues at step 110 where the DS process-
ing determines whether the MTTF compares favorably to a
MTTF threshold and whether the MTTR compares favor-
ably to a MTTR threshold. In an instance, the MTTF
threshold and MTTR threshold are associated with one or
more of a user, a group of users, a vault, a group of vaults,
a DS unit, a group of DS units, and the whole computing
system. The DS processing determines the MTTF threshold
and MTTR threshold based on one or more of a vault
lookup, a system memory lookup, a group of vaults lookup,
and a command. In an example, the DS processing deter-
mines that the MTTF compares favorably to a MTTF
threshold when the MTTF is greater than the MTTF thresh-
old. For instance, the comparison is favorable when the
MTTF is 10,000 hours and the MTTF threshold is 9,000
hours. In another example, the DS processing determines
that the MTTR compares favorably to a MTTR threshold
when the MTTR is less than the MTTR threshold. In an
instance, the comparison is favorable when the MTTR is 1
hour and the MTTR threshold is 3 hours.

The method branches back to step 102 when the DS
processing determines that the MTTF compares favorably to
the MTTF threshold and the MTTR compares favorably to
the MTTR threshold. The method continues to step 112
when the DS processing determines that either the MTTF
does not compare favorably to the MTTF threshold or the
MTTR does not compare favorably to the MTTR threshold.
In an example, either the MTTF is less than the MTTF
threshold or the MTTR is greater than the MTTR threshold.
In an instance, failures are happening too often and when
they do the rebuilding is taking too long.

At step 112, the DS processing retrieves slices from the
affected vault(s) of the DSN memory error to recreate the
data segments and data objects in part by retrieving, de-
slicing, and decoding in accordance with the current error
coding dispersal storage function parameters. At step 114,
DS processing determines new error coding dispersal stor-
age function parameters for the vault, which may include

10

15

20

25

30

35

40

45

50

55

60

65

14

changing the parameters to improve the reliability and/or
reduce the rebuild time. The new parameters may include
the pillar width n, the read threshold, the write threshold, the
encoding algorithm the slicing method etc. Such a determi-
nation may be based on one or more of the current param-
eters, the MTTF, the MTTR, the comparison of the MTTF
to the MTTF threshold, the comparison of the MTTR to the
MTTR threshold, an error message, a lookup, a predetermi-
nation, and a command. For example, the DS processing
may change from a 16/10 system to a 32/20 system to
improve reliability (e.g., pillar width 32/read threshold 20).
At step 116, the DS processing creates new data slices of the
data segments and data objects in accordance with the new
error coding dispersal storage function parameters. The DS
processing sends the new data slices to the DSN memory
with a store command for storage in the DS units.

FIG. 7 is a flowchart illustrating an example of generating
integrity checking elements. The method begins at step 118
where a processing module encodes a data segment in
accordance with an error coding dispersal storage function
to produce a set of encoded data slices. For example, the
processing module encodes a data segment of a data object
for storage. At step 120, the processing module determines
a message authentication key wherein the message authen-
tication key comprises at least one of an output of a random
number generator, a cryptographic key, an integrity check of
the cryptographic key, a hash function of the cryptographic
key, a result of a table lookup, and a result of a retrieval. For
example, the processing module determines the message
authentication key by utilizing the output of the random
number generator that is compatible with a key length of the
message authentication key.

In another example, the processing module determines the
message authentication key by combining the output of the
random number generator with a hash of the output of the
random number generator. Note that in this example, the
hash may be subsequently utilized to determine the validity
of the random number portion (e.g., a cryptographic key) of
the message authentication key. The processing module may
generate a first message authentication key for the data
segment and generate a second message authentication key
for a second data segment. For instance, the first message
authentication key is substantially the same as the second
message authentication key. In another instance, the first
message authentication key is substantially not the same as
the second message authentication key.

The method continues at step 122 where the processing
module generates an authentication code based on the mes-
sage authentication key and an encoded data slice of the set
of encoded data slices. For example, the processing module
generates the authentication code by one of performing a
keyed-hash message authentication code (HMAC) genera-
tion function on the encoded data slice utilizing the message
authentication key or by performing a cryptographic hash
function algorithm on the encoded data slice utilizing the
message authentication key. Examples of HMAC algorithms
include a 16 byte HMAC-MDS (e.g., message digest algo-
rithm 5) and a 20 byte HMAC-SHA1 (e.g., secure hash
algorithm). In addition, the processing module may generate
a second authentication code based on the message authen-
tication key and a second encoded data slice of the set of
encoded data slices. For instance, the processing module
may generate a set of authentication codes based on the
message authentication key and each of the set of encoded
data slices. Note that the authentication code may be used to
facilitate verification of the integrity and/or authenticity of
an encoded data slice.

US 9,465,824 B2

15

The method continues at step 124 where the processing
module encodes the message authentication key into a set of
secret shares based on at least some of the set of DS units
(e.g., apillar number). In an example, the processing module
assigns the message authentication key to a constant of a
polynomial. The polynomial may include multiple constants
and multiple variables. In an instance, the processing mod-
ule assigns the message authentication key to a constant m
when the polynomial is of a form of y=mx+b. The process-
ing module assigns a unique identifier (e.g., the pillar
number) of the corresponding one of the at least some of the
set of DS units to a variable of the polynomial to produce a
first assigned variable. In an instance, the processing module
assigns the unique identifier to a variable x when the
polynomial is of the form y=mx+b. In addition, the process-
ing module may determine values for one or more other
constants of the polynomial. Such a determination may be
based on one or more of a lookup, a request, a message, the
message authentication key, and a command.

The processing module solves the polynomial to produce
a secret share based on the constant, the first assigned
variable, and the one or more other constants. For instance,
the processing module produces the secret share in accor-
dance with the polynomial y=mx+b=80%2+15=175, when
the message authentication key=m=80, the unique
identifier=x=2 for pillar 2, and the other constant=b=15. In
addition, the processing module may assign a second unique
identifier of a second one of the at least some of the set of
DS units to the variable of the polynomial to produce a
second assigned variable followed by the processing module
solving the polynomial to produce a second secret share of
the set of secret shares based on the constant and the second
assigned variable. For instance, the processing module pro-
duces the second secret share in accordance with the poly-
nomial y=mx+b=80%3+15=255, when the message authen-
tication key=m==80, the unique identifier=x=3 for pillar 3,
and the other constant=b=15.

Alternatively, at step 124 the processing module encodes
the message authentication key in accordance with an error
coding dispersal storage function into the set of secret
shares. For instance, the processing module encodes the
message authentication key to produce an encoded message
authentication key. Next, the processing module slices the
encoded message authentication key to produce the set of
secret shares.

At step 126, the processing module appends the authen-
tication code associated with the encoded data slice to the
encoded data slice. In addition, the processing module may
append an authentication code associated with other
encoded data slices of the set of encoded data slices. Further,
the processing module appends the set of secret shares to
associated encoded data slices of the set of encoded data
slices. For example, the processing module appends a first
secret share to a first encoded data slice and appends a
second secret share to a second encoded data slice.

The method continues at step 128 where the processing
module outputs the authentication code and the encoded data
slice to a dispersed storage (DS) unit of a set of DS units for
storage therein. In addition, the processing module may
output the second authentication code and the second
encoded data slice to a second DS unit of a set of DS units
when there is more than one authentication code. The
processing module outputs a secret share of the set of secret
shares to a corresponding one of the at least some of the set
of DS units for storage therein. In addition, the processing

20

25

30

40

45

16

module may output the rest of the secret shares of the set of
secret shares to corresponding DS units of the set of DS units
for storage therein.

FIG. 8 is a flowchart illustrating an example of verifying
encoded data slice integrity. The method begins at step 130
where a processing module issues a retrieval request to
retrieve one or more encoded data slices, one or more
authentication codes, and one or more secret shares from one
or more DS units of a set of DS units. In an example, the
processing module issues the retrieval request in response to
receiving a data object retrieval request. In another example,
the processing module issues that retrieval request in
response to determining an encoded data slice error. The
processing module receives secret shares of a set of secret
shares to produce received secret shares in response to the
retrieval request. The processing module receives encoded
data slices of a set of encoded data slices to produce received
encoded data slices in response to the retrieval request.

The method continues at step 132 where the processing
module decodes the received secret shares in accordance
with a secret share function to recapture a message authen-
tication key when a threshold number of the secret shares is
received. In an example, the processing module performs the
secret share function by assigning a threshold number of
unique identifiers (e.g. pillar numbers) of the threshold
number of received secret shares to a first variable of a
polynomial to produce an assigned value set of the first
variable. For instance, the processing module assigns the
unique identifiers to the variable x when the polynomial is
of'a form of y=mx+b (e.g., x=1 for pillar 1, x=2 for pillar 2,
etc). Next, the processing module assigns the threshold
number of received secret shares to a second variable of the
polynomial to produce an assigned value set of the second
variable. As a more specific example, the processing module
assigns the threshold number of received secret shares to the
variable y when the polynomial is of the form of y=mx+b
(e.g., y=175 for pillar 2, y=255 for pillar 3, etc.). In addition,
the processing module may determine values for one or
more other constants of the polynomial (e.g., b=15 when the
polynomial is of the form y=mx+b). Such a determination
may be based on one or more of a lookup, a request, a
message, the message authentication key, and a command.
The processing module then solves for a constant of the
polynomial (e.g., constant m when the polynomial is of the
form y=mx+b) to produce the message authentication key
based on the assigned value set of the first variable and the
assigned value set of the second variable. For instance,
y=mx+b, such that m=(y-b)/x=(175-15)/2=80=message
authentication key.

Alternatively, the processing module decodes the received
secret shares in accordance with an error coding dispersal
storage function to recapture the message authentication key
when a threshold number of the secret shares is received. For
example, the processing module de-slices the received secret
shares to produce de-sliced secret shares. Next, the process-
ing module decodes the de-sliced secret shares to produce
the message authentication key.

The method continues at step 134 where the processing
module assigns a threshold number of unique identifiers of
a second threshold number of received secret shares to the
first variable of the polynomial to produce a second assigned
value set of the first variable. Next, the processing module
assigns the second threshold number of received secret
shares to the second variable of the polynomial to produce
a second assigned value set of the second variable. Next, the
processing module solves for the constant of the polynomial
to produce a second message authentication key based on

US 9,465,824 B2

17

the second assigned value set of the first variable and the
second assigned value set of the second variable. In an
instance, y=mx+b, such that m=(y-b)/x=(255-15)/
3=80=the second message authentication key, when the
secret share is 255, the pillar is 3, and the constant b=15.

Next, the processing module compares the second mes-
sage authentication key with the message authentication key
and indicates verification of the message authentication key
when the comparing of the second message authentication
key with the message authentication key is favorable (e.g.
substantially the same). For example, the processing module
indicates verification of the message authentication key
when the comparison of the second message authentication
key=80 to the message authentication key=80 indicates a
favorable comparison. The method branches to step 138
when the processing module determines that the message
authentication key is verified. The method branches to step
136 when the processing module determines that the mes-
sage authentication key is not verified. At step 136, the
processing module discards encoded data slices that corre-
sponds (e.g., same pillar) to received secret shares that
produced an invalid message authentication key. In addition,
the processing module may send a delete command to the
DSN memory to delete an encoded data slice associated with
a secret share that produced the invalid message authenti-
cation key.

In another example, the processing module verifies the
message authentication key based on received secret shares
by testing more than one combination of received secret
shares to determine which pillars may produce the invalid
message authentication key. In an instance, the processing
module verifies the message authentication key to be veri-
fied when decoding of all combinations of the threshold
number of secret shares result in the same message authen-
tication key. In another instance, the processing module
determines the message authentication key to be not verified
when the decoding of at least one of the threshold number
of secret shares result in a different message authentication
key than the decoding of at least one other of the threshold
number of secret shares.

In yet another example, the processing module verifies the
message authentication key based on comparing a received
hash of the cryptographic key portion to a calculated hash of
the cryptographic key portion. The processing module deter-
mines that the message authentication key is verified when
the comparison indicates that the received hash of the
cryptographic key portion is substantially the same as the
calculated hash of the cryptographic key portion.

The method continues at step 138 where the processing
module identifies a received encoded data slice of the
received encoded data slices having an authentication code
associated therewith when a threshold number of the
encoded data slices is received. Next, the processing module
performs a keyed-hash message authentication code genera-
tion or a cryptographic hash function algorithm on the
received encoded data slice utilizing the message authenti-
cation key to produce a verification authentication code.

The method continues at step 140 where the processing
module compares the verification authentication code with
the authentication code. The processing module indicates
verification of the authentication code when the comparing
of the verification authentication code with the authentica-
tion code is favorable (e.g., substantially the same). Alter-
natively, the processing module identifies a second received
encoded data slice of the received encoded data slices
having a second authentication code associated therewith
when the threshold number of the encoded data slices is

10

15

20

25

30

35

40

45

50

55

60

65

18

received. Next, the processing module verifies the second
authentication code based on the message authentication key
and the second received encoded data slice (e.g., the pro-
cessing module performs the keyed-hash message authenti-
cation code generation or the cryptographic hash function
algorithm on the second received encoded data slice utiliz-
ing the message authentication key to produce a second
verification authentication code for comparison to the sec-
ond authentication code). Next, the processing module indi-
cates verification of the authentication code when the first
and second authentication codes are verified. The method
branches to step 142 when the processing module deter-
mines that the received authentication code(s) are verified.
The method branches to step 144 when the processing
module determines that the received authentication code(s)
are not verified.

At step 142, the processing module decodes the received
encoded data slices in accordance with an error coding
dispersal storage function to recapture a data segment. At
step 144, the processing module discards encoded data slices
associated with an authentication code that is not verified. In
addition, the processing module may attempt to decode the
received encoded data slices in accordance with the error
coding dispersal storage function wherein the received
encoded data slices are associated with verified authoriza-
tion codes to recapture the data segment. In addition, the
processing module may send a delete command to the DS
unit associated with the received encoded data slice associ-
ated with the authentication code that is not verified to delete
the encoded data slice associated with the authentication
code that is not verified.

FIG. 9 is a flowchart illustrating an example of rebuilding
encoded data slices. The method begins at step 146 where a
DS processing determines a DSN memory error including a
missing data slice, a corrupted data slice, an offline DS unit,
anetwork failure, etc. Such a determination may be based on
one or more of verification of slice name lists, validating a
stored slice checksum with a calculated slice checksum, a
disk drive status, a memory status, an error message, and a
command. Note that the memory error determination may be
associated with a background process and/or upon an active
data slice retrieval sequence.

At step 148, the DS processing determines a DS storage
unit associated with the DSN memory error. The storage set
comprises the DS units assigned as the storage locations for
the n pillars of the vault. Such a determination may be based
on one or more of a vault lookup, a command, a predeter-
mination, and the virtual DSN address to physical location
table. At step 150, the DS processing determines DS unit
metrics for the DS units of the associated DS storage set with
the DSN memory error. The DS unit metrics includes one or
more of a ping time from the DS processing to the DS unit,
throughput, uptime, security performance, reliability perfor-
mance, and previous retrieval results. Such a determination
may be based on one or more of a vault lookup, a command,
a predetermination, a history record, a previous measure-
ment, and a real time measurement.

The method continues at step 152 where the DS process-
ing determines read DS units to facilitate a desired slice
retrieval sequence. Such a determination may be based on
one or more of the DS unit metrics, an algorithm to choose
the fastest response, a vault lookup, a command, a prede-
termination, a history record, a previous measurement, and
a real time measurement. For example, the DS processing
chooses DS units of pillars at the same site as the DS
processing and in a second choice, chooses other DS units
with the lowest ping times to facilitate fast retrieval.

US 9,465,824 B2

19

At step 154, the DS processing retrieves EC data slices
from the read DS units by sending a retrieval command with
slice names to the read DS units and receiving retrieved
slices. At step 156, the DS processing attempts to recreate
the data object from the retrieved slices by de-slicing and
decoding at least a read threshold k of the slices in accor-
dance with an error coded dispersal storage function. At step
158, the DS processing determines whether the data object
recreation is successful based on a read threshold number of
retrieved slices. For example, the DS processing determines
an unsuccessful data object recreation when at least one data
segment does not have at least a read threshold number of
retrieved slices to recreate the data segment. The method
branches to step 162 when the DS processing determines
that the data object recreation is successful. The method
continues to step 160 when the DS processing determines
that the data object recreation is not successful. At step 160,
the DS processing modifies the DS unit metrics to indicate
aprevious unsuccessful retrieval. The method branches back
to step 152 where the DS processing determines the read DS
units to try again.

The method continues at step 162 where the DS process-
ing recreates slices from the recreated data object in accor-
dance with the error coded dispersal storage function. At
step 164, the DS processing sends the recreated slices and
slice names to the DS unit storage set with a store command
to store the slices therein. In an example, the DS processing
may send the slices to the DS unit(s) where the DSN
memory error was detected. In another example, the DS
processing may send the slices to the DS unit(s) where the
DSN memory error was detected and at least one other DS
unit of the DS unit storage set. Note that the DS processing
may send the slices to the DS units one pillar at a time, all
at once as a batch, or a combination thereof.

FIG. 10 is a flowchart illustrating another example of
rebuilding encoded data slices. The method begins at step
166 where a DS processing determines a DSN memory error
including a missing slice, a corrupted slice, an offline DS
unit, a network failure, etc. Such a determination may be
based on one or more of verification of slice name lists,
validating a stored slice checksum with a calculated slice
checksum, a disk drive status, a memory status, an error
message, and a command. Note that the memory error
determination may be associated with a background process
and/or upon an active slice retrieval sequence.

At step 168, the DS processing determines a DS storage
unit associated with the DSN memory error. The storage set
comprises the DS units assigned as the storage locations for
the n pillars of the vault. Such a determination may be based
on one or more of a vault lookup, a command, a predeter-
mination, and the virtual DSN address to physical location
table. At step 170 The DS processing determines the DS unit
pillar with the DSN memory error based on one or more of
a vault lookup, a command, a history record, a previous
measurement, and a real time measurement.

At step 172, the DS processing retrieves EC data slices
from one or more of the DS units by sending a retrieval
command with slice names to the read DS units and receiv-
ing retrieved slices. In an example, the DS processing sends
the retrieval command(s) all at once to at least a read
threshold number of DS units of the DS storage set. Note
that the subsequent rebuilding may rebuild more than one
pillar based on utilization of network bandwidth once to
receive slices. In an instance, each rebuild for each pillar
need not re-retrieve all the slices of the storage set each time.

At step 174, the DS processing determines all of the DS
unit pillars with DSN memory error(s) based on one or more

10

15

20

25

30

35

40

45

50

55

60

65

20

of, but not limited to the retrieved slices, a vault lookup, a
command, a history record, a previous measurement, and a
real time measurement. For example, the DS processing
determines that DS unit pillar 3 is in error when no slice was
received from DS unit pillar 3. At step 176, the DS pro-
cessing recreates the data object from the retrieved slices by
de-slicing and decoding at least a read threshold k of the
slices in accordance with an error coded dispersal storage
function. At step 178, the DS processing recreates slices
from the recreated data object in accordance with the error
coded dispersal storage function.

The method continues with step 180 where the DS
processing sends the recreated slices and slice names to the
DS unit pillars with the DS memory error(s) with a store
command to store the slices therein. In an example, the DS
processing sends the slices to the DS unit(s) where the DSN
memory error was detected. In another example, the DS
processing sends the slices to the DS unit(s) where the DSN
memory error was detected and at least one other DS unit of
the DS unit storage set. Note that the DS processing sends
the slices to the DS units one pillar at a time or all at once.

FIG. 11 is a schematic block diagram of another embodi-
ment of a computing system. As illustrated, the system
includes a plurality of DS units 1-6 where DS units 1 and 2
are implemented at site 1, DS units 3 and 4 are implemented
at site 2, and DS units 5 and 6 are implemented at site 3. As
illustrated, DS unit 1 includes a storage integrity processing
module 182 and a memory 184. In addition, DS units 2-6
may include the storage integrity processing module 182 and
the memory 184. The storage integrity processing module
182 includes functionality of the storage integrity processing
unit enabling the DS unit to function to rebuild EC data
slices. The DS units 1-6 are operably coupled by local
communications 186-190 (e.g., a local area network) when
they are at the same site and by a network 24 (e.g., a wide
area network) when they are not at the same site.

The storage integrity processing module 182 of the DS
storage units 1-6 is capable of reconstructing a data segment,
based on receiving recovered slices from at least some of the
other DS storage units in a centralized fashion or each DS
storage unit may sequentially compute a portion of the
information to produce a reconstructed slice when the mini-
mum number of good pillar slices has been included. In an
example, the system has a pillar with n=6 and a read
threshold k=4.

The DS units 1-6 communicate with each other to estab-
lish shared secrets by pairs of DS units (e.g., a shared secret
between each combination of two DS units). The shared
secret (e.g., common shared secret value) is a number
generated randomly by either of the DS units of the pair. The
shared secret number size may include any number of bytes.
In an example of operation, DS unit 1 communicates with
DS unit 5 to establish a shared secret S15 between them.
Next, DS unit 5 generates a random number F4A7 and sends
the number to DS unit 1 as a proposed shared secret. Next,
DS unit 1 accepts the proposal and sends a confirmation
message to DS unit 5 that F4A7 is their shared secret.

Note that the shared secret may be encrypted such that a
stored representation of the shared secret is encrypted (e.g.,
with a public key for the DS unit). The DS unit may decrypt
the stored shared secret utilizing a private key associated
with the DS unit. In addition, the shared secret may be
encrypted such that a transmitted representation of the
shared secret is encrypted (e.g., with a public key for the
receiving DS unit). The receiving DS unit may decrypt a
received shared secret utilizing a private key associated with
the receiving DS unit.

US 9,465,824 B2

21

In an example, DS unit 1 and DS unit 5 establish shared
secret S15 (e.g., a unique shared secret value), DS unit 1 and
DS unit 4 establish shared secret S14, DS unit 1 and DS unit
2 establish shared secret S12, DS unit 2 and DS unit 5
establish shared secret S25, DS unit 2 and DS unit 4
establish shared secret S24, and DS unit 4 and DS unit 5
establish shared secret S45.

Any of the DS units 1-6 may detect a data slice error in
memory and may initiate a rebuild sequence by sending a
partial decode command (e.g., partial rebuild requests) to at
least a read threshold number (e.g., decode threshold num-
ber) of other DS units of the storage set where the partial
decode command includes the pillar number of the detected
error. The other DS units determine the partial (e.g., partial
rebuilt slice), obfuscate the partial to create an obfuscated
partial (e.g., secured partial rebuilt slice), and send the
obfuscated partial to the DS unit in response to receiving a
partial decode command. The DS unit de-obfuscates each of
the partials and recreates the data slice of the data slice error
and re-stores the slice. Note that none of the DS units receive
data slices from other DS units and the partials are sent over
the local communication or network in an obfuscated format
to provide improved security and confidentiality. The
method is discussed in greater detail with reference to FIGS.
12-16.

In another example of operation, a data slice error at DS
unit 3 is detected by the storage integrity processing module
182 of DS unit 3. The storage integrity processing module
182 identifies the slice names to recover to reconstruct the
slice in error based on the slice name of the failed slice. The
storage integrity processing module 182 of DS unit 3 sends
a partial decode command to a read threshold number of the
DS units of the storage set (e.g., to DS units 1, 2, 4, 5). In
an instance, the partial decode command includes an identity
of the third pillar as the pillar with the error and a list of the
DS units that were sent the partial decode command set (e.g.,
to DS units 1, 2, 4, 5).

In the example, DS unit 1 retrieves the requested data
slice from its memory 184 and performs a partial decode
step followed by a partial encode to produce a partial result
P3,1 for the first slice pillar based on knowing that it is the
third pillar with the error. Note that the partial decode and
partial encode steps involve finite field arithmetic (e.g., a
mathematical function) for the error control scheme and will
be discussed in greater detail with reference to FIGS. 13-16.
Note that a fundamental principle is that any slice can be
recreated via combining the partial results from the com-
panion data slices of companion pillars.

In the example, DS unit 1 retrieves the shared secrets S12,
S14, and S15 between DS unit 1 and the other DS units of
the read threshold set (e.g., DS units 2, 4, 5). In the example,
the DS unit 1 obfuscates the partial result P3,1 utilizing an
exclusive OR (XOR) logical function with each of the
shared secrets S12, S14, S15 to produce
P3,1PS12PS14PS15. The DS unit 1 sends the obfuscated
partial to the DS unit 3. The method to create the obfuscated
partial is discussed in greater detail with reference to FIG.
13.

In the example, DS unit 2 retrieves the slice from its
memory 184 and performs a partial decode step followed by
a partial encode step to produce a partial result P3,2 for the
second slice pillar based on knowing that it is the third pillar
with the error. The DS unit 2 retrieves the shared secrets S12,
S24, and S25 between DS unit 2 and the other DS units of
the read threshold set (e.g., DS units 1, 4, 5). In the example,
DS unit 2 obfuscates the partial result P3,2 utilizing an
exclusive OR (XOR) logical function with each of the

10

15

20

25

30

35

40

45

50

55

60

65

22

shared secrets S12, S24, S25 to produce
P3,20S12PS24PS25. The DS unit 2 sends the obfuscated
partial to the DS unit 3. The method to create the obfuscated
partial is discussed in greater detail with reference to FIG.
14.

In the example, DS unit 4 retrieves the slice from its
memory 184 and performs a partial decode step followed by
a partial encode step to produce a partial result P3.4 for the
fourth slice pillar based on knowing that it is the third pillar
with the error. In the example, DS unit 4 retrieves the shared
secrets S14, S24, and S45 between DS unit 4 and the other
DS units of the read threshold set (e.g., DS units 1, 2, 5).
Next, the DS unit 4 obfuscates the partial result P3.4
utilizing an exclusive OR (XOR) logical function with each
of the shared secrets S14, S24, S45 to produce
P3,4DS14PS24PS45. The DS unit 4 sends the obfuscated
partial to the DS unit 3. The method to create the obfuscated
partial is discussed in greater detail with reference to FIG.
15.

In the example, DS unit 5 retrieves the slice from its
memory 184 and performs a partial decode step followed by
a partial encode step to produce a partial result P3,5 for the
fifth slice pillar based on knowing that it is the third pillar
with the error. Next, DS unit 5 retrieves the shared secrets
S15, S25, and S45 between DS unit 5 and the other DS units
of the read threshold set (e.g., DS units 1, 2, 4). In example,
DS unit 5 obfuscates the partial result P3,5 utilizing an
exclusive OR (XOR) logical function with each of the
shared secrets S15, S25, S45 to produce
P3,50S15S25PS45. The DS unit 5 sends the obfuscated
partial to the DS unit 3. The method to create the obfuscated
partial is discussed in greater detail with reference to FIG.
16.

In the example, DS unit 3 receives the obfuscated partials
from DS units 1, 2, 4, and 5. The DS unit 3 utilizes an
obfuscation decoder to produce the desired pillar three slice
based on the received obfuscated partials. In an instance, the
obfuscation decoder XORs the obfuscated partials with each
other to produce the desired slice. Note that the XOR of the
four obfuscated partials will cancel out the twelve shared
secrets since there are two identical shared secrets (e.g., one
pair) of the six permutations of DS unit pairs amongst the
four DS units. In an instance, the recreated slice of pillar
three can be written as:

= P3, 1@S128S514@515@ P3,
205125249525 P3, 49 S14 9524 5450 P3,
SOSISOS25 G545 =P3, 1§ P3, 20 P3, 46 F3,
SOS129512@S140S149 5155159524 52402505250

S45@S45=P3,1®P3,2®P3,4® P3,5 =Slice 3

Next, DS unit 3 stores the re-created pillar three slice in
memory 184 thus completing rebuilding sequence to correct
the slice failure.

FIG. 12 is a schematic block diagram of an embodiment
of a plurality of grid modules 82. As illustrated, grid module
82 includes a post-slice de-manipulator 81, a de-slicer 87, a
partial decoder 192, a partial encoder 194, an obfuscation
encoder 196, and an obfuscation decoder 197. A single grid
module 82 may perform tasks on every pillar (e.g., all the DS
units for this storage set) or the grid module 82 may perform
the tasks on one pillar. In an example, the post-slice de-
manipulator 81 performs a de-manipulation (e.g., CRC) on

US 9,465,824 B2

23

the good EC data slice before sending the slice to the
de-slicer 87. The de-slicer 87 de-slices the slice to create its
portion of the encoded data segment. In an instance, the
de-slicer may be null. The partial decoder for 92 performs a
decode function on the portion of the encoded data segment
to produce a partially decoded portion of the data segment.
The partial encoder 194 encodes the partially decoded
portion of the data segment to produce a partially encoded
portion of the data segment for this pillar.

In an example, slice 1_2 is in error at site 2. The grid
module 82 processes slices 1_0,1_1,1_3, and 1_4, to create
corresponding partials P3,1, P3,2, P3.4, and P3,5 which are
obfuscated by an XOR with each of the stored shared secrets
for the pillars in the retrieval sequence as discussed previ-
ously. The grid module 82 at site 2 may utilize an obfusca-
tion decoder 197 on the obfuscated partials with finite field
arithmetic to produce and locally store the desired recon-
structed slice 1_2. The arithmetic will be discussed in
greater detail with reference to FIGS. 13-16.

FIG. 13 is a schematic block diagram of another embodi-
ment of a grid module. As illustrated, the grid module
includes a partial decoder 192, a partial encoder 194, and an
obfuscation encoder 196. Together, they transform a known
good slice into an obfuscated partial result that is later
combined with other such partial results to determine a
particular missing slice from the same data segment. In an
example, FIGS. 13-16 illustrate the sequential steps to
reconstruct a failed pillar 3 slice. In the example, the error
control approach utilizes six pillars and requires at least four
good pillars to reconstruct a missing slice (e.g., a 6/4
system). The example will illustrate utilizing pillars 1, 2, 4,
and 5 to reconstruct the missing pillar 3 slice. The high level
approach starts with each of the four encoder/decoder pairs
creating their obfuscated partial result.

The partial decoder 192 matrix multiples an incoming
good pillar 1 slice S1 from DS unit 1 at site 1 times a matrix
A' (e.g., a reduced matrix) where the number of rows equals
the number of pillars and the number of columns equals the
minimum number of required pillars for decoding. The first
column is populated with random numbers a, b, d, e, and f.
In an instance, these numbers are be different for in the
matrix A' of the other pillars. Note that there is no need for
a number c in the third row since that is the missing pillar
row, nor the last row (f) since only four of the six pillars are
required for reconstruction. The result is a vector d=aS1,
bS1, ds1, e S1.

The partial encoder 194 matrix multiples the vector d
times a matrix A (e.g., encoding matrix) where the number
of rows equals the number of pillars and the number of
columns equals the minimum number of required pillars for
decoding. All the rows are blanked out of the encoding
matrix except for row 3 which is populated with entries 9,
10, 11, 12 representing the entry numbers of the A matrix.
These same numbers will be used in all the other partial
encoders for the other pillars. The partial encoder produces
the partial result for missing pillar 3, good pillar 1 as
P3,1=9aS1+105S1+11dS1+12¢S1.

The obfuscation encoder 196 performs the XOR function
of P3,1 with each of the shared secrets S12, S14, ad S15 to
produce the obfuscated partial P3,1DS12HS14PS15 for
slice 1. The grid module 82 sends the obfuscated partial to
DS unit 3.

FIG. 14 is a schematic block diagram of another embodi-
ment of a grid module. As illustrated, the grid module
includes a partial decoder 192, a partial encoder 194, and an
obfuscation encoder 196. Together, they transform a known
good slice into an obfuscated partial result that is later

25

30

40

45

50

24

combined with other such partial results to determine a
particular missing slice from the same data segment.

In the continuing example, DS unit 2 partial decoder 192
matrix multiples the incoming good pillar 2 slice S2 from
DS unit 2 at site 1 times a matrix A' where the number of
rows equals the number of pillars and the number of
columns equals the minimum number of required pillars for
decoding. In an instance, the second column is populated
with random numbers g, h, j, k, and 1. Note that these
numbers are different for in the matrix A' of the other pillars.
Note that there is no need for a number i in the third row
since that is the missing pillar row, nor the last row (1) since
only four of the six pillars are required for reconstruction.
The result is a vector d=gS2, hS2, jS2, kS2.

The partial encoder 194 matrix multiples the vector d
times a matrix A where the number of rows equals the
number of pillars and the number of columns equals the
minimum number of required pillars for decoding. Note that
the rows are blanked out except for row 3 which is populated
with entries 9, 10, 11, 12 representing the entry numbers of
the A matrix. These same numbers will be used in all the
other partial encoders for the other pillars. The partial
encoder 184 produces the partial result for missing pillar 3,
good pillar 2 as P3,2=9¢S2+10/4S2+117S2+124S2.

The obfuscation encoder 196 performs the XOR function
of P3,2 with each of the shared secrets S12, S24, ad S25 to
produce the obfuscated partial P3,2S125S24PS25 for
slice 2. The grid module 82 sends the obfuscated partial to
DS unit 3.

FIG. 15 is a schematic block diagram of another embodi-
ment of a grid module. As illustrated, the grid module
includes a partial decoder 192, a partial encoder 194, and an
obfuscation encoder 196. Together, they transform a known
good slice into an obfuscated partial result that is later
combined with other such partial results to determine a
particular missing slice from the same data segment.

The example continues where DS unit 4 partial decoder
192 matrix multiples the incoming good pillar 4 slice S4
from DS unit 4 at site 2 times a matrix A' where the number
of rows equals the number of pillars and the number of
columns equals the minimum number of required pillars for
decoding. Note that the third column is populated with
random numbers m, n, p, q, and r. An instance, these
numbers will be different for in the matrix A' of the other
pillars. Note that there is no need for a number o in the third
row since that is the missing pillar row, nor the last row (r)
since only four of the six pillars are required for reconstruc-
tion. The result is a vector d=mS4, nS4, pS4, qS4.

The partial encoder 194 matrix multiples the vector d
times a matrix A where the number of rows equals the
number of pillars and the number of columns equals the
minimum number of required pillars for decoding. All the
rows are blanked out except for row 3 which is populated
with entries 9, 10, 11, 12 representing the entry numbers of
the A matrix. Note that these same numbers will be used in
all the other partial encoders for the other pillars. The partial
encoder produces the partial result for missing pillar 3, good
pillar 4 as P3,4=9mS4+102S4+11pS4+12¢4S4.

The obfuscation encoder 196 performs the XOR function
of P3,4 with each of the shared secrets S14, S24, ad S45 to
produce the obfuscated partial P3,4DS14DS24PS45 for
slice 4. The grid module 82 sends the obfuscated partial to
DS unit 3.

FIG. 16 is a schematic block diagram of another embodi-
ment of a grid module. As illustrated, the grid module 82 a
partial decoder 192, a partial encoder 194, and an obfusca-
tion encoder 196. Together, they transform a known good

US 9,465,824 B2

25

slice into an obfuscated partial result that is later combined
with other such partial results to determine a particular
missing slice from the same data segment.

In the continuing example, DS unit 5 partial decoder 192
matrix multiples the incoming good pillar 5 slice S5 from
DS unit 5 at site 3 times a matrix A' where the number of
rows equals the number of pillars and the number of
columns equals the minimum number of required pillars for
decoding. Note that the fourth column is populated with
random numbers s, t, v, w, and x. In an instance, these
numbers will be different for in the matrix A' of the other
pillars. Note that there is no need for a number u in the third
row since that is the missing pillar row, nor the last row (x)
since only four of the six pillars are required for reconstruc-
tion. The result is a vector d=sS5, tS5, vS5, wS5.

Next, partial encoder 194 matrix multiples the vector d
times a matrix A where the number of rows equals the
number of pillars and the number of columns equals the
minimum number of required pillars for decoding. Note that
all the rows are blanked out except for row 3 which is
populated with entries 9, 10, 11, 12 representing the entry
numbers of the A matrix. In an instance, these same numbers
will be used in all the other partial encoders for the other
pillars. Next, partial encoder 94 produces the partial result
for missing pillar 3, good pillar 5 as P3,5=9sS5+10sS5+
11vS5+12wS5.

The obfuscation encoder 196 performs the XOR function
of P3,5 with each of the shared secrets S15, S25, ad S45 to
produce the obfuscated partial P3,5S15HS250S45 for
slice 5. The grid module 82 sends the obfuscated partial to
DS unit 3 where the obfuscation decoder 197 decodes the for
partials to produce the re-created slice 1_2. Next, DS unit 3
stores the re-created slice in the memory 184 to substantially
complete the rebuilding process described in example.

FIG. 17 is a flowchart illustrating an example of optimiz-
ing memory usage by a storage integrity processing unit.
The method begins with step 198 where a DS processing of
(e.g., one of the storage integrity processing unit, the DS
managing unit, the DS processing unit, the DS unit, and/or
the user device) determines a slice to investigate for dele-
tion. Such a determination may be based on one or more of
a random slice on a DS unit, a random slice in the computing
system, a first slice of the first vault, a last slice that was
investigated, an error message, an error detection, a priority
indicator, a security indicator, a predetermination, and a
command.

At step 200, the DS processing determines DS storage
units of a DS storage set associated with the slice. Note that
the storage set comprises DS units assigned as the storage
locations for the n pillars of a vault. Such a determination
may be based on one or more of a vault lookup, a command,
a predetermination, and the virtual DSN address to physical
location table. At step 202, the DS processing retrieves EC
data slices from all n (e.g., pillar width) of the DS units by
sending a retrieval command to the DS units of additional
storage set and by receiving retrieved slices.

The method continues with step 204 where the DS
processing determines if slices for all n pillars were received
by counting them and/or matching slice names to pillar
numbers. The method branches back to step 198 (e.g., to go
to the next slice) when the DS processing determines that
slices for all n pillars were received. The method continues
to step 206 when the DS processing determines that the
slices for all n pillars were not received. At step 206, the DS
processing attempts to recreate the data segment from the
retrieved slices decoding at least a read threshold k of the
slices in accordance with an error coding dispersal storage

5

10

15

20

25

30

35

40

45

50

55

60

65

26

function. Next, the DS processing determines if the data
segment recreation was successful based on a read threshold
number of retrieved slices. For example, the DS processing
determines an unsuccessful data object recreation when at
least one data segment does not have at least a read threshold
number of retrieved slices to recreate the data segment. The
method branches to step two into when the DS processing
determines that the data segment recreation was successful.
The method continues to step 210 one the DS processing
determines that the data segment recreation was not suc-
cessful. At step 210, the DS processing sends a delete
command to the DS units for this data segment to delete all
the slice names associated with the data segment. Note that
the method provides an improvement to free up memory
when partial data exists that is not recoverable.

At step 212, the DS processing recreates slices from the
recreated data segments of the data object in accordance
with the error coding dispersal storage function when the DS
processing determines that all the data segments were suc-
cessfully recreated for the data object. At step 214, the DS
processing sends the recreated slices and slice names to the
DS unit storage set with a store command to store the slices.
In an example, the DS processing sends the slices to the DS
unit(s) where the slices were missing. In another example,
the DS processing sends the slices to the DS unit(s) where
the slices were missing and at least one other DS unit of the
DS unit storage set. In an instance, the DS processing sends
the slices to the DS units one pillar at a time. In another
instance, the DS processing sends the slices to the DS units
all at once as a batch.

FIG. 18 is a flowchart illustrating another example of
optimizing memory usage. The method begins at step 216
where a DS processing (e.g., of one of the storage integrity
processing unit, the DS managing unit, the DS processing
unit, the DS unit, and/or the user device) determines a data
object to investigate for deletion. Such a determination may
be based on one or more of a random data object on a DS
unit, a data object in the computing system, a first data object
of the first vault, a last data object that was investigated, an
error message, an error detection, a priority indicator, a
security indicator, a predetermination, and a command.

At step 218, the DS processing determines a number of
data segments that should exist based on vault information
for data object. At step 220, the DS processing determines
DS storage units of the DS storage set associated with the
data object. Such a determination may be based on one or
more of a vault lookup, a command, a predetermination, and
a virtual DSN address to physical location table lookup. At
step 222, the DS processing retrieves at least one EC data
slices from at least one of the n pillars of the DS units by
sending a retrieval command to the DS units and by receiv-
ing retrieved slices.

The method continues at step 224 where the DS process-
ing determines whether at least one EC data slice from at
least one of the n pillars of the DS units for each data
segment were received by counting them and/or matching
slice names, data segment IDs, to pillar numbers. Note that
the segments may all be present when at least one slice is
retrieved from each data segment of the data object. The
method branches back to step 216 (e.g., to go to the next data
object) when the DS processing determines that at least one
slices for all the data segments were received. The method
continues to step 226 when the DS processing determines
that least one EC data slice from at least one of the n pillars
of the DS units for each data segment were not received.

At step 226, the DS processing determines a disposition
method of missing data segments. Such a method includes

US 9,465,824 B2

27

deleting the data object or filling missing data segment(s).
Such a determination may be based on one or more of a vault
lookup, a command, a predetermination, a priority indicator,
a security indicator, and a data object type. For example, the
DS processing determines to delete the data object when the
data type is a software program backup that cannot tolerate
errors. In another example, the DS processing determines to
fill the missing data segment(s) of a data object when the
data type is a video file that can tolerate errors. The method
branches to step 230 when the DS processing determines the
disposition method of missing data segments to be to fill the
segments. The method continues to step 228 when the DS
processing determines the disposition method of missing
data segments to be to delete the data object. At step 228, the
DS processing sends a delete slice command to the DS units
that have slice names associated with the data object. In an
instance, the DS processing deletes the data object name
from an associated vault. In another instance, DS processing
deletes a directory reference of the data object name from a
directory.

At step 230, the DS processing determines filler data
segment(s) for missing segment(s) of the data object. For
example, the filler may include all zeroes, all ones, a pattern,
a predetermined number, a received number, a backup data
segment, or a hash of data (e.g., the data segment ID, the
data object ID, the remaining data object, etc.). Such a
determination may be based on one or more of a vault
lookup, a command, a predetermination, a security indicator,
a priority indicator, and a data type. At step 232, the DS
processing creates slices from the filler data segment(s) of
the data object in accordance with an error coding dispersal
storage function. At step 234, the DS processing sends the
slices and associated slice names to the DS unit storage set
with a store command to store the slices there in. In an
example, the DS processing sends the slices to the DS unit(s)
where the data segment(s) were missing. In another
example, the DS processing sends the slices to the DS unit(s)
where the data segment(s) were missing and at least one
other DS unit of the DS unit storage set. In an instance, the
DS processing sends the slices to the DS units one pillar at
a time. In another instance, the DS processing sends the
slices to the DS units all at once.

FIG. 19 is a flowchart illustrating another example of
optimizing memory usage. The method begins with step 236
where a DS processing (e.g., of one of the storage integrity
processing unit, the DS managing unit, the DS processing
unit, the DS unit, and/or the user device) determines a data
object name in the directory to investigate for deletion. Such
a determination may be based on one or more of a random
data object on a DS unit, a data object in the computing
system, a first data object of the first vault, a last data object
that was investigated, an error message, an error detection,
a priority indicator, a security indicator, a predetermination,
and a command.

At step 238, the DS processing determines the data
segments that should exist based on vault information for
data object. At step 240, the DS processing determines DS
storage units of the DS storage set associated with the data
object. Such a determination may be based on one or more
of a vault lookup, a command, a predetermination, and the
virtual DSN address to physical location table. At step 242,
the DS processing retrieves at least one EC data slice from
at least one data segment of the data object from the DS units
by sending a retrieval command with slice names to the DS
units and by receiving retrieved slices.

The method continues at step 244 where the DS process-
ing determines whether at least one EC data slice from at

10

15

20

25

30

35

40

45

50

55

60

65

28

least one of the n pillars of the DS units of at least one data
segment of the data object was received by counting them
and/or matching slice names, data segment IDs, to pillar
numbers. Note that the data object may be present when at
least one slice is retrieved from at least one data segment of
the data object. The method branches back to step 236 where
the DS processing determines the data object in the directory
(e.g., to go to the next data object) when the DS processing
determines that at least one slice exists for the data. The
method continues to step 246 when the DS processing
determines that least one EC data slice of the data object was
not received. At step 246, the DS processing deletes the data
object name from the directory since no slices exist for the
data object.

FIG. 20 is a flowchart illustrating another example of
optimizing memory usage. The method begins at step 248
where a DS processing (e.g., of one of the storage integrity
processing unit, the DS managing unit, the DS processing
unit, the DS unit, and/or the user device) determines a slice
name in DSN memory to investigate for deletion. Such a
determination may be based on one or more of a random
slice on a DS unit, a random slice in the computing system,
the first slice of the first vault, the last slice that was
investigated, an error message, an error detection, a priority
indicator, a security indicator, a predetermination, and a
command.

The method continues at step 250 where the DS process-
ing determines if a data object name exists in a directory
linked to the slice name. Such a determination may be based
on converting the slice name into a source name and
checking the directory vault for the source name. The DS
processing determines the slice name is linked to a data
object name in the directory when the source name is found.
The method branches back to step 248 (e.g., to go to another
slice name) when the DS processing determines that the data
object name exists in a directory linked to the slice name.
The method continues to step 252 when the DS processing
determines that the data object name does not exist in a
directory linked to the slice name. At step 252, the DS
processing unit links the slice name to a lost and found
directory for potential subsequent processing. Additionally,
the DS processing may delete the slice (e.g., a lost slice). In
another instance, the DS processing links the slice to a
different data object name in the directory (e.g., a found
slice).

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes

US 9,465,824 B2

29

one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

While the transistors in the above described figure(s)
is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-
ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

The present invention has also been described above with
the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claimed invention.

The present invention has been described, at least in part,
in terms of one or more embodiments. An embodiment of
the present invention is used herein to illustrate the present
invention, an aspect thereof, a feature thereof, a concept
thereof, and/or an example thereof. A physical embodiment
of an apparatus, an article of manufacture, a machine, and/or
of'a process that embodies the present invention may include
one or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

The present invention has been described above with the
aid of functional building blocks illustrating the perfor-
mance of certain significant functions. The boundaries of
these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

What is claimed is:

1. A method comprises:

determining, by a computing device of a dispersed storage

network (DSN), that an encoded data slice of a set of
encoded data slices requires rebuilding, wherein a data

10

15

20

25

30

35

40

45

50

55

60

65

30

segment is encoded using an error coding dispersal
storage function to produce the set of encoded data
slices;

sending, by the computing device, partial rebuild requests

to storage units of the DSN, wherein the set of encoded
data slices are distributedly stored within the storage
units, wherein the partial rebuild requests include iden-
tity of the storage units and are generated by the
computing device;

generating, by one of the storage units, a partial rebuilt

slice based one or more encoded data slices of the set
of encoded data slices stored by the one of the storage
units;
securing, by the one of the storage units, the partial rebuilt
slice using a shared secret scheme that is shared among
the storage units to produce a secured partial rebuilt
slice, wherein the shared secret scheme includes using
shared secret values of other storage units to produce
the secured partial rebuilt slice;
receiving, by the computing device, a set of secured
partial rebuilt slices from the storage units;

recovering, by the computing device, a set of partial
rebuilt slices from the set of secured partial rebuilt
slices based on the shared secret values of the storage
units; and

rebuilding, by the computing device, the encoded data

slice from the set of partial rebuilt slices.

2. The method of claim 1, wherein the computing device
determining that the encoded data slice requires rebuilding
further comprises:

identifying the storage units from a plurality of storage

units of the DSN for facilitating the rebuilding.

3. The method of claim 1, wherein the one of the storage
units generating the partial rebuilt slice comprises:

obtaining an encoding matrix associated with the error

coding dispersal storage function;

reducing the encoding matrix for generating the partial

rebuilt slice to produce a reduced matrix;

inverting the reduced matrix to produce a partial decode

matrix; and

generating the partial rebuilt slice based on the partial

decode matrix and the one or more encoded data slices
of the set of encoded data slices stored by the one of the
storage units.

4. The method of claim 1, wherein the one of the storage
units generating the partial rebuilt slice comprises:

providing a copy of the one or more encoded data slices

as the partial rebuilt slice.

5. The method of claim 1, wherein the one of the storage
units securing the partial rebuilt slice further comprises:

identifying a common shared secret value that is com-

monly shared by the storage units and the computing
device; and

securing the partial rebuilt slice using the common shared

secret value.

6. The method of claim 1, wherein the one of the storage
units securing the partial rebuilt slice further comprises:

identifying a unique shared secret value that is commonly

shared by the one of the storage units and the comput-
ing device; and

securing the partial rebuilt slice using the unique shared

secret value.

7. The method of claim 1, wherein the recovering the set
of partial rebuilt slices comprises:

exclusive ORing the set of secure partial rebuilt slices

with the shared secret values of the storage units,
wherein the computing device received 2*n copies of

US 9,465,824 B2

31

each of the shared secret values, and wherein n is
greater than or equal to one.

8. The method of claim 1, wherein the computing device
recovers the set of partial rebuilt slices further comprises at
least one of:

decrypting the set of secured partial rebuilt slices using a
common shared secret value, wherein the common
shared secret value that is commonly shared by the
storage units and the computing device; and

performing a mathematical function on the set of secured
partial rebuilt slices using the common shared secret
value.

9. A dispersed storage network (DSN) comprises:

a computing device that includes a processing module and
memory; and

storage units, wherein each storage unit of the storage
units includes a storage processing module and storage
memory, wherein:

the processing module determines that an encoded data
slice of a set of encoded data slices requires rebuilding,
wherein a data segment is encoded using an error
coding dispersal storage function to produce the set of
encoded data slices;

the processing module sends partial rebuild requests to the
storage units, wherein the set of encoded data slices are
distributedly stored within the storage units, herein the
partial rebuild requests include identity of the storage
units and are generated by the processing module;

a storage processing module of one of the storage units
generates a partial rebuilt slice based on one or more
encoded data slices of the set of encoded data slices
stored in a storage memory of the one of the storage
units;

the storage processing module of the one of the storage
units secures the partial rebuilt slice using a shared
secret scheme that is shared among the storage units to
produce a secured partial rebuilt slice, wherein the
shared secret scheme includes using shared secret val-
ues of other storage units to produce the secured partial
rebuilt slice;

the processing module receives a set of secured partial
rebuilt slices from the storage units;

the processing module recovers a set of partial rebuilt
slices from the set of secured partial rebuilt slices based
on the shared secret values of the storage units; and

the processing module rebuilds the encoded data slice
from the set of partial rebuilt slices.

10. The DSN of claim 9, wherein the processing module
further determines that the encoded data slice requires
rebuilding by:

identifying the storage units from a plurality of storage
units of the DSN for facilitating the rebuilding.

20

30

35

40

45

50

32

11. The DSN of claim 9, wherein the storage processing
module of the one of the storage units generates the partial
rebuilt slice by:

obtaining an encoding matrix associated with the error

coding dispersal storage function;

reducing the encoding matrix for generating the partial

rebuilt slice to produce a reduced matrix;

inverting the reduced matrix to produce a partial decode

matrix; and

generating the partial rebuilt slice based on the partial

decode matrix and the one or more encoded data slices
of the set of encoded data slices stored in the storage
memory of the one of the storage units.

12. The DSN of claim 9, wherein the storage processing
module of the one of the storage units generates the partial
rebuilt slice by:

providing a copy of the one or more encoded data slices,

from the storage memory of the one of the storage
units, as the partial rebuilt slice.

13. The DSN of claim 9, wherein the storage processing
module of the one of the storage units further secures the
partial rebuilt slice by:

identifying a common shared secret value that is com-

monly shared by the storage units and the computing
device; and

securing the partial rebuilt slice using the common shared

secret value.

14. The DSN of claim 9, wherein the storage processing
module of the one of the storage units further secures the
partial rebuilt slice by:

identifying a unique shared secret value that is commonly

shared by the one of the storage units and the comput-
ing device; and

securing the partial rebuilt slice using the unique shared

secret value.
15. The DSN of claim 9, wherein the processing module
recovers the set of partial rebuilt slices by:
exclusive ORing the set of secured partial rebuilt slices
with the shared secret values of the storage units,
wherein the computing device received 2*n copies of
each of the shared secret values, and wherein n is
greater than or equal to one.
16. The DSN of claim 9, wherein the processing module
further recovers the set of partial rebuilt slices by at least one
of:
decrypting the set of secured partial rebuilt slices using a
common shared secret value, wherein the common
shared secret value that is commonly shared by the
storage units and the computing device; and

performing a mathematical function on the set of secured
partial rebuilt slices using the common shared secret
value.

